skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sato, Yudai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We numerically calculated ferromagnetic resonance (FMR) spectra taken on a single-domain nano-size ferromagnetic island structure in the configuration of radio-frequency (RF) scanning tunneling microscopy, where RF electromagnetic waves are introduced into the tunneling gap through the probe tip. In this scheme, near-field in-plane azimuthal RF magnetic field induces FMR of an out-of-plane magnetized island situated below the tip under the external out-of-plane magnetic field. The amount of the magnetization of the island is effectively reduced by the resonance and the reduction can be detected from the spin-polarized tunneling conductance. From the calculated spectra we found that the FMR signal becomes larger with a smaller tip-sample distance and a sharper tip. It is also revealed that the azimuthal RF magnetic field exerted on the island and therefore the FMR signal are enhanced when a tip is located near the edge of the island. 
    more » « less